
Unordered Data Structures:
Sets and Maps

What’s an example of “unordered data” that you’ve
encountered in your life?

PollEv.com/cs106bpolls

http://pollev.com/cs106bpolls

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Roadmap

Life after CS106B!

C++ basics

User/client
Implementation

Today’s
question

When is it appropriate to
use different types of
unordered data structures?

Today’s
topics

1. Review

2. Sets

3. Maps

4. (if time) Nested ADTs

Review
(grids and queues and stacks, oh my!)

The “container store”

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;
○ Grid<type> gridName(numRows, numCols);
○ Grid<type> gridName = {{r0c0, r0c1, r0c2}, {r1c0, r1c1, r1c2},...};

● We could use a combination of Vectors to simulate a 2D matrix, but a Grid is
easier!

a0 a1 a2

b0 b1 b2

c0 c1 c2

struct
A way to bundle different types of information
in C++ – like creating a custom data structure.

Definition

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

● To declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;

origin.row = 0;

origin.col = 0;

struct GridLocation {

int row;

int col;

}

What is a queue?

● Like a real queue/line!

● First person In is the First person
Out (FIFO)
○ When you remove (dequeue) people from the queue, you remove them

from the front of the line.

● Last person in is the last person served
○ When you insert (enqueue) people into a queue, you insert them at the

back (the end of the line).

What is a stack?

● Modeled like an actual stack (of pancakes)

● Only the top element in a stack is accessible.
○ The Last item In is the First one Out. (LIFO)

● The push, pop, and top operations are the only
operations allowed by the stack ADT.

Ordered ADTs with accessible
indices

Types:

● Vectors (1D)
● Grids (2D)

Traits:

● Easily able to search through all
elements

● Can use the indices as a way of
structuring the data

Ordered ADTs where you can’t
access elements by index

Types:

● Queues (FIFO)
● Stacks (LIFO)

Traits:

● Constrains the way you can insert
and access data

● More efficient for solving specific
LIFO/FIFO problems

What ADT should we
use?

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

(Queues)

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

Using data structures:
Towers of Hanoi

Towers of Hanoi

● Setup:
○ Three “towers”
○ N disks of decreasing sizes (below: N = 3)

● Goal: Move the disk stack from the first peg to the last peg

Towers of Hanoi

● Rules:
○ Can only move one disk at a time
○ You cannot place a larger disk on top of a smaller disk

Attendance ticket:
https://tinyurl.com/cs106btowers

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/cs106btowers

Towers of Hanoi

Stack <int> source = {3, 2, 1};

Stack <int> auxiliary;

Stack <int> destination; // this should become {3, 2, 1}

Pseudocode

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Let’s look at the code
solution for three disks!
[Ed workspace]

https://edstem.org/us/courses/22400/workspaces/phzLWJOcbfPLU7Fg2BJ7EIvBv6cOEaSu

Let’s look at the code
solution for three disks!

Challenge for home: How would you generalize
your solution to N disks instead of just 3?

Why do we use
unordered ADTs?

The “container store”

Examples of unordered data

● Unique visitors to a website

● Shuffled playlist with no duplicate songs

● People and their passport numbers on a particular flight

● A recipe with ingredients and their quantities

● Products placed into categories in an online storefront

Examples of unordered data

● Unique visitors to a website

● Shuffled playlist with no duplicate songs

● People and their passport numbers on a particular flight

● A recipe with ingredients and their quantities

● Products placed into categories in an online storefront

When we say “unordered” vs. “ordered,” we’re
referring specifically to numerical orderings.

Examples of unordered data

● Unique visitors to a website

● Shuffled playlist with no duplicate songs

● People and their passport numbers on a particular flight

● A recipe with ingredients and their quantities

● Products placed into categories in an online storefront

Sometimes numerical indices/ordering is not the most efficient way to store information!

Sets

What is a set?

● A set is a collection of elements with
no duplicates.

● Sets are faster than ordered data
structures like vectors – since there are no duplicates, it’s faster for them to
find things.
○ (Later in the quarter we’ll learn about the details of the underlying

implementation that makes this abstraction efficient.)
○ We’ll formally define “faster” tomorrow.

● Sets don’t have indices!

Set methods
● Sets have (at least) the following operations (and they are fast):

○ add(value): adds a value to a set, and ignores if the set already contains
the value

○ contains(value): returns true if the set contains the value, false
otherwise.

○ remove(value): removes the value from the set. Does nothing if the
value is not in the set.

○ size(): returns the number of elements in the set
○ isEmpty(): returns true if the set is empty, false otherwise

● For the exhaustive list, check out the Stanford libraries documentation.

https://web.stanford.edu/dept/cs_edu/cppdoc/Set-class.html

Set example
Set<string> friends;

friends.add("jenny");

friends.add("kylie");

friends.add("trip");

// can also use: Set<string> friends = {“jenny”, “kylie”, “trip”};

Set example
Set<string> friends;

friends.add("jenny");

friends.add("kylie");

friends.add("trip");

// can also use: Set<string> friends = {“jenny”, “kylie”, “trip”};

cout << boolalpha << friends.contains("voldemort") << noboolalpha

<< endl;

Set example
Set<string> friends;

friends.add("jenny");

friends.add("kylie");

friends.add("trip");

// can also use: Set<string> friends = {“jenny”, “kylie”, “trip”};

cout << boolalpha << friends.contains("voldemort") << noboolalpha

<< endl;

for(string person : friends) {

 cout << person << endl;

}

Set example
Set<string> friends;

friends.add("jenny");

friends.add("kylie");

friends.add("trip");

// can also use: Set<string> friends = {“jenny”, “kylie”, “trip”};

cout << boolalpha << friends.contains("voldemort") << noboolalpha

<< endl;

for(string person : friends) {

 cout << person << endl;

}

false
jenny
kylie
trip

Set operands

Sets can be compared, combined, etc.
● s1 == s2

true if the sets contain exactly the same elements
● s1 != s2

true if the sets don't contain the exact same elements

Set operands

Sets can be compared, combined, etc.
● s1 == s2

true if the sets contain exactly the same elements
● s1 != s2

true if the sets don't contain the exact same elements
● s1 + s2

returns the union of s1 and s2 (i.e., all elements in both)

s1 s2

Set operands

Sets can be compared, combined, etc.
● s1 == s2

true if the sets contain exactly the same elements
● s1 != s2

true if the sets don't contain the exact same elements
● s1 + s2

returns the union of s1 and s2 (i.e., all elements in both)
● s1 * s2

returns the intersection of s1 and s2 (i.e., only the elements in both sets)

s1 s2

Set operands

Sets can be compared, combined, etc.
● s1 == s2

true if the sets contain exactly the same elements
● s1 != s2

true if the sets don't contain the exact same elements
● s1 + s2

returns the union of s1 and s2 (i.e., all elements in both)
● s1 * s2

returns the intersection of s1 and s2 (i.e., only the elements in both sets)
● s1 - s2

returns the difference of s1 and s2 (the elements in s1 but not in s2)

s1 s2

Common Set patterns and pitfalls

● Use for each loops to iterate over sets

for (type currElem : set) {

 // process elements one at a time

}

● You cannot use anything that attempts to index into the set
(e.g. for (int i = 0;..) or set[i])

Unique words program
[live coding]

Announcements

Announcements

● Assignment 1 is due Friday at 11:59pm PDT.

● Assignment 2 will be out by the end-of-the-day on Thursday and will be due
next Thursday at 11:59pm PDT.

○ We’re still finalizing YEAH timing and will announce that tomorrow.

● No lecture on Monday! But we will be releasing a shorter required video over
the weekend to help you get started with nested ADTs for A2 instead.

● Jenny will be covering my group OH today since I’m not in person.

Maps

What is a map?

● A map is a collection of key/value
pairs, and the key is used to quickly find
the value.

● Other terms you may hear for a map are dictionary (Python) or associative
array.

● A map is an alternative to an ordered data structure, where the “indices” no
longer need to be integers.

Map methods
● The following functions are part of the Map class:

○ m.clear() : removes all key/value pairs from the map
○ m.containsKey(key) : returns true if the map contains a value for the given key
○ m[key]

m.get(key) : returns the value associated with key in this map. If key is not found,
returns the default value for ValueType.

○ m.isEmpty() : returns true if the map contains no key/value pairs (size 0)
○ m.keys() : returns a Vector copy of all keys in the map
○ m[key] = value

m.put(key, value) : adds a mapping from the given key to the given value; if the
key already exists, replaces its value with the given one

○ m.remove(key) : removes any existing mapping for the given key (ignored if the
key doesn't exist in the map)

○ m.size() : returns the number of key/value pairs in the map
○ m.values() : returns a Vector copy of all the values in the map

● For the exhaustive list, check out the Stanford library documentation.

https://web.stanford.edu/dept/cs_edu/cppdoc/Map-class.html

Map example

// maps from string keys to string values
Map<string, string> phoneBook;

// key value
phoneBook["Jenny"] = "867-5309"; // or
phoneBook.put("Jenny", "867-5309");

Map example

// maps from string keys to string values
Map<string, string> phoneBook;

// key value
phoneBook["Jenny"] = "867-5309"; // or
phoneBook.put("Jenny", "867-5309");

Inserting new
values

Map example

// maps from string keys to string values
Map<string, string> phoneBook;

// key value
phoneBook["Jenny"] = "867-5309"; // or
phoneBook.put("Jenny", "867-5309");

string jennyNumber = phoneBook["Jenny"]; // or
string jennyNumber = phoneBook.get("Jenny");
cout << jennyNumber << endl;

Accessing values

Map example

// maps from string keys to string values
Map<string, string> phoneBook;

// key value
phoneBook["Jenny"] = "867-5309"; // or
phoneBook.put("Jenny", "867-5309");

string jennyNumber = phoneBook["Jenny"]; // or
string jennyNumber = phoneBook.get("Jenny");
cout << jennyNumber << endl;

// maps from string keys to Vector<double> values
Map<string, Vector<double>> accounts;

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

for (type curKey : map) {

// see map values using map[curKey]

}

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

for (type curKey : map) {

// see map values using map[curKey]

}

But don’t remove keys within the loop as you’re iterating!

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

for (type curKey : map.keys()) {

// see map values using map[curKey]

}

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

for (type curKey : map.keys()) {

// see map values using map[curKey]

}

Okay to edit map within this loop because
.values()/.keys()makes a Vector copy of the values/keys.

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

 Map<string, int> freqMap;

 while (true) {

 string text = getLine("Enter some text: ");

 cout << "Times seen: " << freqMap[text] << endl;

 freqMap[text]++;

 }

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

 Map<string, int> freqMap;

 while (true) {

 string text = getLine("Enter some text: ");

 cout << "Times seen: " << freqMap[text] << endl;

 freqMap[text]++;

 }
This auto-inserts the key text into the map
if it doesn’t already exist!

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

 Map<string, int> freqMap;

 while (true) {

 string text = getLine("Enter some text: ");

 cout << "Times seen: " << freqMap[text] << endl;

 freqMap[text]++;

 }
Note: auto-insertion only happens with the []
operator, not the .get() function

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

Map<string, int> playerPointsMap;

...

// get key to test if it’s in the map

if (playerPointsMap[key] == 0) {

cout << key << " already exists" << endl;

}

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

Map<string, int> playerPointsMap;

...

// get key to test if it’s in the map

if (playerPointsMap[key] == 0) { // will always be true!

cout << key << " already exists" << endl;

}

Common Map patterns and pitfalls

● Use for each loops to iterate over maps

● Auto-insert: a map feature that can also cause bugs

Map<string, int> playerPointsMap;

...

// use containsKey function, no auto-insert

if (playerPointsMap.containsKey(key)) { // correct way

cout << key << " already exists" << endl;

}

Unique words program
(extended)
[live coding]

ADT summary...

Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Maps (keys unique)

Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Maps (keys unique)

Useful when numerical ordering of
data isn’t optimal

Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Keys (keys unique)

Useful when numerical ordering of
data isn’t optimal

ADTs Takeaway: Matching
structure with purpose

results in better efficiency!

Nested Data Structures

Nested Data Structures

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

● You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

Nested Data Structures

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

● You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

● This weekend’s recorded video will go into an in-depth example of using
nested data structures.

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Quick lookup by animal name

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>> Store multiple, ordered feeding times

per animal

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Wonderful diagram and animal naming borrowed from Sonja Johnson-Yu

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

How do we use modify the internal
values of this map?

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

Which of the following three snippets of code will
correctly update the state of the map?

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

Which of the following three snippets of code will
correctly update the state of the map?

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

feedingTimes["lumpy"].add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

// makes and modifies a copy, not the actual map value:
Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

● If you choose to store the internal data structure in an intermediate variable,
you must do an explicit reassignment to get your changes to persist.

// would store the modified `times` copy in the map
feedingTimes["lumpy"] = times;

Nested ADTs Summary

● Powerful
○ Can express highly structured and complex data
○ Used in many real-world systems

● Tricky
○ With increased complexity comes increased cognitive load in

differentiating the information stored at each level of the nesting.
○ Specifically in C++, working with nested data structures can be tricky due

the use of references and copies. Follow the correct paradigms to stay on
track!

One final note… const reference

● Passing a large object (e.g. a million-element Vector) by value makes a copy,
which is inefficient in time and space.

● Passing parameters by reference avoids making a copy, but creates risk that a
function may modify a piece of data that you don’t want it to edit.

● Solution: const reference!
○ The “by reference” part avoids a copy.
○ The “const” (constant) part means that the function can’t change that argument.

void proofreadLongEssay(const string& essay) {
/* can read, but not change, the essay. */

}

Example from slides made by Keith Schwarz

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

testing
recursive

problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

algorithmic
analysis

Core
Tools

Big O and Algorithmic Analysis

